2020年度广东省科学技术奖公示表 (科技进步奖)

项目名称	新型苯并咪唑类催化剂在不对称氢化反应中的应用研究及产业化
主要完成单位	单位1:中山奕安泰医药科技有限公司
	单位 2: 广东工业大学
	单位 3: 广州中医药大学
	以下按照人员职称、工作单位、对项目的主要贡献排序
主要完成人(职称、工作单位、完成单位、完成单位、主要贡献)	1.徐亮(高级工程师、中山奕安泰医药科技有限公司、专利发明人、论文
	作者、成果登记项目完成人)
	2.蒙发明(副主任药师、中山奕安泰医药科技有限公司、专利发明人、论 文作者)
	3.张翠仙(教授、广州中医药大学、成果登记项目完成人)
	4.刘艳(教授、广东工业大学、项目完成人)
	5.毛波(制药工程师、中山奕安泰医药科技有限公司、专利发明人)
	6.李彦雄(化工工程师、中山奕安泰医药科技有限公司、专利发明人、论
	文作者)
	7.刘毓宏(高级工程师、中山奕安泰医药科技有限公司、成果登记项目完 成人、专利发明人、论文作者)
	8.李跃辉(中级工程师、中山奕安泰医药科技有限公司、专利发明人)
	9.黄志鸿(中级工程师、中山奕安泰医药科技有限公司、专利发明人)
	10.周有桂(中级工程师、中山奕安泰医药科技有限公司、专利发明人、
	成果登记项目完成人)
	11.杨青海(中级工程师、中山奕安泰医药科技有限公司、成果登记项目
	完成人)
项目简介	一、项目主要技术内容 该项目针对手性药物中间体绿色合成催化技术开展研究,首次提出根
	据仿生催化理念,利用苯并咪唑双氮配体,以氢气作为氢源进行不对称氢
	化反应,得出高效实用、绿色环保的催化剂体系,并在生物医药实现关键
	性的应用。
	(1) BIMAH 配体及催化剂体系的合成
	根据仿生催化的理念,开发了以 NH ₂ -C-C=N (N(sp ³)-N(sp ²))为基本结
	构单元的手性含氮杂合双齿配体的苯并咪唑双氮配体(BIMAH 配体),
	并利用氢气为氢源进行不对称氢化反应,得出一类高效实用、经济环保的 BIMAH 催化剂体系。并在医药中间体中实现应用。这类配体制备简单,
	BIMAH 催化剂体系。并任医约中间体中实现应用。这类配体制备间早, 原料廉价易得且结构多样性,具有较高的对映选择性。
	(2) β-BIMAH 配体及催化剂体系的合成
	改造 BIMAH 配体,以相对应的 β 氨基酸为初始原料,经 BOC 对氨
	基进行保护后,与邻苯二胺(或邻氨基苯酚)经缩合、关环后得到 BOC
	氨基保护的 β-BIMAH 配体,再经酸脱保护后得到相应的 β-BIMAH 催化
	剂体系,该催化剂体系具有良好的对映选择性和放大工业化运行稳定的优
	点。

(3) 手性药物中间体合成工艺

针对手性药物中间体筛选合适催化剂,中间体催化工艺进行小试研究,找到最佳反应条件,再进行中试放大研究,找到最佳反应条件,最终得到工业化运行稳定的生产工艺,同时对原料药/制剂进行质量研究,将产品的质量做到符合注册申报的法规要求,最后进行原料药和制剂的注册申报。

二、授权专利情况及获奖情况

苯并咪唑类催化剂研究过程中,产出多项发明专利,已授权发明专利9项,其中4项为催化剂发明专利,6项为药物中间体制备工艺发明专利;同时,该项目成果应用于美国、俄罗斯、印度等多个国家,为保护项目成果申请PCT专利2项,已于2017年之前全部授权。项目成果获市级科技奖励4项,市级重大科技专项1项,市级创新团队1项,成果登记1项,制定企业标准1项,论文4项。

三、技术经济指标

(1) 技术指标

催化剂性能指标: 手性药物底物合成复杂、生产成本高、金属残留难去除是困扰我国手性技术的重点难题,本项目首创苯并咪唑类催化剂体系,配件简单、廉价易得,具有良好的产物对映选择性(手性纯度≥99.5%)、转化率≥99.7%,循环使用,绿色环保。

合成工艺指标:氢化压力 5-10 个大气压,远低于通常钌基催化剂的50-100 个大气压;消除金属残留;减少生产废液,有利于环保,废液可减少 50%以上;工艺可以实现工业化生产,规模达到每批量产 40kg 以上产品。

手性药物的产品质量指标:产品质量达到原研厂家的质量标准,高于药典标准,高于同行业水平。

(2) 经济指标

该成果已成功应用于中国、印度、美国等多个国家,为WOCKHARDT, Lupin、STREM、正大天晴、石药等国内外大公司提供了质量良好的催化 剂和药物中间体,近三年,产品产值累计14893.2万元,累计销售收入14586 万元,累计利润2248.49万元,累计新增税收497.76万元。直接提供就业 岗位105个,推动国内新药行业发展,获得了良好的社会及生态效益。

四、应用及效益情况

本项目技术达到国际领先地位,产品可在新药创制及医药工业中广泛应用,提升我国医药领域国际地位。自成果应用之后,项目完成单位销售收入增长率达到80%以上,利润增长率达到10%以上。

代表性论文 专著目录

论文 1: HPLC 法测定阿普斯特对映异构体

论文 2: 3-氯甲基-1, 2, 4-三唑啉-5-酮合成工艺研究

论文 3: 选择性胆固醇吸收抑制剂-依泽替米贝的合成工艺改进

论文 4: 依泽替米贝中间体的新工艺

专利 1: <一类含氮配体过渡金属络合物、合成方法及其用途> (ZL200810038929.8)

知识产权名称

专利 2: <一种含氮杂环配体过渡金属络合物制备及其催化应用> (ZL201010296853.6)

专利 3: <一类新型含氮配体金属钌络合物及其制备方法和用途> (ZL201280014922.7)

	专利 4: <一种二苯甲醇及其衍生物的制备方法>(ZL201110118671.4)
	专利 5: <一种阿普斯特手性胺中间体的合成工艺>(ZL201510106728.7)
	专利 6: <一种阿普斯特手性胺中间体的合成方法>(ZL201510107040.0)
	专利 7: <一种制备(R)-3-奎宁环醇的方法>(ZL201410214732.0)
	专利 8: <不对称催化氢化法合成阿维巴坦中间体 5 的方法>
	(ZL201510875697.1)
	专利 9: <孟鲁斯特纳中间体的制备方法>(ZL201510873840.3)
	专利 10: <ruthenium amineligands,="" complexes="" having="" hybrid="" th="" their<=""></ruthenium>
	preparation and use> (US12/997,051)
推广应用情况	奕安泰拥有国外原料的营销网络资源,在奕安泰成立之初就与国外一些制药公司建立了紧密的合作关系,采取合同定制生产方式,成为国外合同生产商供应链中的一环,因此,可按需求进行计划的研发产品,又有国外先进技术来源的支持,能使产品快速进入国际高端市场,并且营销成本较低。其中我司生产的高质量阿瑞吡坦的中间体,使得我司成为国内外几家大的公司的注册供应商(如下图),比如印度的 WOCKHARDT, Lupin等,国内的正大天晴、扬子江、石药等。阿瑞吡坦 2018 年专利到期,届时市场需求量将进入快速增长阶段。 本项目技术达到国际领先地位,项目成功实施后,可在新药创制及医药工业中广泛应用,为国内外提供优质、低成本的医药中间体,目前,应用本项目技术合成的中间体主要有 8 大类,项目整体成果实施从 2017 年开始推广使用,广受好评,自成果应用之后,奕安泰销售收入增长率达到80%以上,利润增长率达到10%以上。